

Funded by the European Union

D2.6: Architecture of the Dynamic

Energy & Process Management

Platform

T2.5 - Definition of the architecture of the overall Dynamic

Energy & Process Management platform

WP2: Flexibility assessment and project framework definition

Authors: LINKS

Contributors: RINA-C, CERTH, CAR, CIRCE, UoP, SIM, STAM, FORD, MIL, THD, PRO,

TITAN, INTEC

Ref. Ares(2024)1199652 - 16/02/2024

2 Dynamic Energy & Process Management Platform

Funded by the European Union

Technical references

Project Acronym FLEXIndustries

Project Title Digitally-enabled FLEXible Industries for reliable energy
grids under high penetration of Variable Renewable
Energy Sources (VRES)

Project Coordinator RINA CONSULTING SPA
coordinator@flexindustries.eu

Project Duration June 2022 – May 2026 (48 months)

Deliverable No. D2.6

Dissemination level* PU

Work Package WP2 - Flexibility assessment and project framework
definition

Task T2.5 - Definition of the architecture of the overall Dynamic
Energy & Process Management platform

Lead beneficiary 5 (LINKS)

Contributing beneficiary/ies 1 (RINA-C), 2 (CERTH), 3 (CAR), 4 (CIRCE), 6 (Up), 7
(SIM), 8 (STAM) , 14 (FORD), 20 (MIL), 21 (THD), 23
(PRO), 24 (TITAN), 26 (INTEC)

Due date of deliverable 31/01/2024

Actual submission date 06/02/2024

* PU = Public

 PP = Restricted to other programme participants (including the Commission Services)

 RE = Restricted to a group specified by the consortium (including the Commission Services)

 CO = Confidential, only for members of the consortium (including the Commission Services)

v Date Beneficiary Author

0.1 02/09/2022 LINKS – Document Draft – TOC Enrico Ferrera, Francesco Aglieco, Lino Mediavilla

0.2 17/01/2024 LINKS – Chapter 1 and 2 Nicolò Bertozzi, Anna Geraci

3 Dynamic Energy & Process Management Platform

Funded by the European Union

0.3 18/01/2024 LINKS – Chapter 3 Anna Geraci

0.4 19/01/2024 LINKS – Revision of Chapter 1 and 2 Nicolò Bertozzi, Anna Geraci

0.4 22/01/2024 LINKS – Chapter 4 Nicolò Bertozzi

0.5 23/01/2024 LINKS – Chapter 4 Nicolò Bertozzi

0.6 29/01/2024 LINKS – Chapter 4 Nicolò Bertozzi

1.0 31/01/2024 LINKS – Chapter 4 – Overall Revision Nicolò Bertozzi, Anna Geraci

1.1 02/02/2024 TUB – Internal Revision Mustafa Aktaş

2.0 06/02/2024 LINKS – Comments Inclusion Nicolò Bertozzi, Anna Geraci

4 Dynamic Energy & Process Management Platform

Funded by the European Union

Table of contents

Technical references .. 2

Table of contents .. 4

1.1. List of Tables ... 6

1.2. List of Figures .. 6

1. Introduction .. 7

1.1. FLEXIndustries Project Overview .. 9

1.2. Interconnection with Tasks .. 9

2. Architecture Design ... 11

2.1. ISO/IEC/IEEE 42010:2011 Standard .. 11

2.1.1. System of Interest ... 12

2.1.2. Stakeholder... 12

2.1.3. Architecture... 12

2.1.4. Architectural Description ... 12

2.1.5. Concern .. 12

2.1.6. View .. 12

2.1.7. Viewpoint .. 12

2.1.8. Model .. 13

2.2. 4+1 Architectural View Model ... 13

2.2.1. Logical View (Functional Viewpoint) ... 13

2.2.2. Physical View (Deployment Viewpoint) ... 14

2.2.3. Process View .. 14

2.2.4. Development View .. 14

2.2.5. Scenarios (Use Cases) View .. 14

3. Methodology .. 15

3.1. Architecture Design Process .. 15

3.2. Analysis of Stakeholders and Requirements .. 16

3.3. Required Components .. 19

3.3.1. Data Gathering and Management ... 19

3.3.2. Data Orchestration .. 19

3.3.3. Data Processing ... 20

3.3.4. Platform Integration .. 20

4. Architecture Views ... 21

4.1. Scenario ... 21

4.2. Logical View ... 21

4.2.1. WP4 and WP5 Agents .. 22

4.2.2. Communication Backbone .. 23

4.2.3. Multi-Agent System ... 24

5 Dynamic Energy & Process Management Platform

Funded by the European Union

4.2.4. Data Handler ... 25

4.2.5. Resources and Data Management Layer ... 25

4.2.6. Frontend SDK ... 26

4.2.7. Security Platform Integration and Management Tools 26

4.3. Deployment View ... 28

4.3.1. Docker Containers .. 28

4.3.2. Kubernetes ... 29

4.3.3. Apache Kafka ... 30

4.3.4. Redis .. 31

4.3.5. Ingress and Egress ... 31

4.3.6. Apache Apisix ... 32

4.3.7. Keycloak ... 32

4.3.8. GitLab ... 33

4.3.9. Loki ... 34

4.3.10. Grafana ... 34

4.3.11. Prometheus .. 35

4.4. Process View ... 36

4.4.1. User – Multi-Agent System Communication ... 37

4.4.2. Multi-Agent System – Agent Communication.. 38

4.4.3. Multi-Agent System – Data Handler Communication .. 39

4.5. Development View ... 40

4.5.1. Data Model ... 42

4.5.2. Workflow Example .. 42

4.5.3. Asynchronous Paradigm ... 44

4.6. Roles of involved partners.. 44

5. Conclusions ... 47

References ... 48

6 Dynamic Energy & Process Management Platform

Funded by the European Union

1.1. List of Tables

Table 1: Stakeholders .. 16

Table 2: Platform Requirements .. 17

Table 3: Alternative tools for Apache Kafka. .. 30

Table 4: Alternative tools for Apache Apisix. .. 32

Table 5: Alternative tools for GitLab. .. 33

Table 6: Alternative tools for Loki. .. 34

Table 7: Alternative tools for Grafana. ... 35

Table 8: Alternatives to Prometheus. ... 36

Table 9. Contributions from involved partners ... 44

1.2. List of Figures

Figure 1: Technical architecture of the FLEXIndustries Dynamic Energy & Process
Management Platform. ... 8

Figure 2: Architecture concepts and their relationships. .. 13

Figure 3: Activities supporting architecture definition. .. 15

Figure 4: Macro-level modules composing the FLEXIndustries Platform. 19

Figure 5: Logical View.. 22

Figure 6: APIs exposed by the platform to the user. .. 24

Figure 7: Deployment View. ... 28

Figure 8: Communication between the User and the Multi-Agent System through the API
Backend. ... 37

Figure 9: Communication between the Multi-Agent System and the Agent without and with
optional data. .. 38

Figure 10: Communication between the Multi-Agent System and the Data Handler, with
the Resources and Data Management Layer (RDML). ... 39

Figure 11: Development View .. 40

Figure 12: Data Model adopted for the communication between the core components. ... 42

Figure 13: Example of a possible simple workflow that can be requested to the Multi-Agent
System. ... 42

Figure 14: Coding implementation of the workflow of Figure 13. 43

Figure 15: Partner View. .. 46

https://istitutoboella.sharepoint.com/sites/csc/Documenti%20condivisi/General/Projects/2022-EU-FLEXIndustries/WP%20Workspace/WP2%20-%20Flexibility%20assessment%20and%20project%20framework%20definition%20(CIRCE)/T2.5/D2.6%20v_2_0.docx#_Toc158133760
https://istitutoboella.sharepoint.com/sites/csc/Documenti%20condivisi/General/Projects/2022-EU-FLEXIndustries/WP%20Workspace/WP2%20-%20Flexibility%20assessment%20and%20project%20framework%20definition%20(CIRCE)/T2.5/D2.6%20v_2_0.docx#_Toc158133760

7 Dynamic Energy & Process Management Platform

Funded by the European Union

1. Introduction

This Deliverable presents the work done and the results obtained in the initial phase (M5-
M20) of Task 2.5 (T2.5), titled “Definition of the architecture of the overall Dynamic Energy
& Process Management platform” of the FLEXIndustries project. This deliverable serves
as the first version of the task report, with the second version to be submitted at M31.

The objective of T2.5 is to define the architecture details, building upon the high-level
schema presented in Grant Agreement Document, Figure 1. The following paragraphs
delve into the correlation between the components within the schema and the role that
T2.5 plays for each of them. In the next paragraph there is a brief description of this
correlation, that was deeply described in the next chapters.

The components of the Digital Twin Backend are structured in four different layers:
Resources and Data Management Layer, Modelling Layer, Perception Layer and Planning
and Operational Layer.

As for the Resources and Data Management Layer (RDML) plays a pivotal role in ensuring
seamless interoperability at the field level and with external services. The role of T2.5 is
defining the interface between the backbone and the RDML, through the Data Handler
component, and definition of the mechanism to retrieve and store data.

The Modelling Layer encompasses the Simulation Engine, a crucial component that acts
as a unifying force, harmonizing these diverse modelling elements into a holistic
framework. The Perception Layer incorporates AI algorithms that utilize Modelling Layer
engines and real-time data for simulations, providing forecasts for energy, material costs,
consumption, renewable energy availability, and safety-related information.
Task 2.5 aims to establish an action plan for the development of infrastructure that
facilitates communication between the Agents of both Layers and, specifically, the
backbone and Multi-Agent System. These Agents correspond to the modules developed in
WP5.

The Planning and Operational Layer contains modules for optimizing processes and
managing energy. It addresses offline optimal process and energy planning and online
optimal process and energy management. Task 2.5 clarifies how the information from the
Perception Layer guides the reasoning engines in defining steps needed to achieve the
goals set by the application layer, through the Multi-Agent System.

Task 2.5 is also engaged in defining communication not only among the components of
the Digital Twin Backend but also with all external elements interfacing with it.
Indeed, the Dynamic Energy & Process Management Platform architecture is completed
by the Digital Twin Frontend (T4.4) and two vertical layers: the Security Layer that contains
the Security, Privacy and Trust component; and the Deployment Layer that contains the
Distributed Deployment and Configuration component. In this deliverable were clarified
some aspects for what concerns this last Layers, and which tools will be used to develop
the concept behind them.

8 Dynamic Energy & Process Management Platform

Funded by the European Union

Figure 1: Technical architecture of the FLEXIndustries Dynamic Energy & Process Management
Platform.

The following document is structured into these chapters.

The first chapter introduces the purpose and scope of T2.5, providing a brief description of
the project overview and its interconnection with other tasks.

The second chapter, about the Architecture Design part, presents the initial architecture
design of the Dynamic Energy & Process Management platform. This chapter explores
the pivotal role of architecture design in software-intensive systems, focusing on the widely
adopted ISO/IEC/IEEE 42010:2011 standard. Evolving from IEEE 1471, it provides a
structured methodology for creating architectural descriptions (ADs). We delve into the
step-by-step workflow, emphasizing the identification of stakeholders, concerns, and the
use of viewpoints to ensure architectural consistency.

The third chapter defines the methodology used to design the architecture. The
methodology follows the one defined in the previous chapter. In this chapter the different
stakeholders and requirements were analyzed, to produce a list of macro-components that
define the whole platform in a generalized way. Details about the specific elements of the
macro-components are provided in Chapter 4.

The fourth chapter enters in detailed exploration about 4 + 1 architectural views applied to
the platform, as introduced in chapter 2.2. The clear definition of these four views and the
scenario enables a comprehensive visualization of the future implementation of the
platform from different perspectives.
In this context, the scenario needs to be generalized, considering that the use cases of the
different pilots could be highly customized for each of them. Instead, the four views provide
different information about the platform, and aim to achieve different goals. The primary

9 Dynamic Energy & Process Management Platform

Funded by the European Union

objective of the logical view is to illustrate the functionalities that the platform provides to
its users with a brief description of the components involved in the platform. The
deployment view describes the physical arrangement of the system's components,
outlining the infrastructure and environment in which they operate. It includes a brief
description of the tools used, or proposals tools, for component deployment. The process
view depicts the dynamic aspects of the system, using UML sequence diagrams to explain
the sequence of operations that the platform must be able to perform in order to achieve
its objectives. It focuses on the interactions between components during runtime. The
development view elucidates how the system's components are created, structured, and
organized during the development process. It provides insights into the reasoning behind
the design decisions and development methodologies employed.
The chapter ends with a small schema of the role of the partner involved in this
architecture design process.

1.1. FLEXIndustries Project Overview

The FLEXIndustries project is dedicated to improving energy efficiency and process
flexibility in seven energy-intensive industrial sectors, aiding the transition to better energy
sources and operational enhancements. With five key objectives, the project aims to
assess industrial flexibility, enhance information and technology integration for improved
energy monitoring, establish a secure platform for energy and process management,
encourage sustainable energy practices, and validate solutions in real industrial settings.
Work Package 2 specifically focuses on a market analysis of flexibility potential in intensive
industries and to identify a comprehensive set or parameters of the energy-intensive
industries. Which will help develop a monitoring and evaluation plan based on a set of
performance KPIs to assess the requirements on flexibility management tools and DSS
modules. Finally, to define and establish the architecture of the overall FLEXIndustries
platform, that corresponds to the part in which this deliverable will focus on.

1.2. Interconnection with Tasks

Task 2.5 plays a crucial role in the project’s development by designing the Dynamic
Energy & Process Management platform, a component to be developed in WP4 and WP5,
and then deployed in the demo sites. The inherent connection with both WP4 and WP5 is
evident, as the design must align with the functionalities and specifications set forth in
these work packages.

This Task is not strictly connected with the other tasks in WP2, except for Task 2.4 (T2.4),
and, to a lesser degree, Task 2.3 (T2.3).

T2.4 involves collaborating in the definition of the project architecture, by providing the
requirements and specifications for flexibility management tools and Decision Support
System (DSS) modules.
The scope of T2.4, according with RTO guidelines and Pilot, is to gather information
regarding the DSS modules required for each pilot in the project and how they integrate
with the overall platform. Once all necessary information has been obtained, the platform
will be designed at the level of setting their specifications and functionalities.

10 Dynamic Energy & Process Management Platform

Funded by the European Union

These requirements, furnished by T2.4, serve as the foundation for T2.5 to define an
architecture that meets all the needs of the pilots and facilitates interaction between
components within the platform. This collaborative effort ensured that the platform’s design
aligns seamlessly with the flexibility requirements outlined in the project, fostering a
cohesive and effective system.

Task 2.3 provides the requirements and specifications that must be taken into
consideration in the design of the overall platform architecture, ensuring that the platform
meets the needs of energy and process management identified during the analysis of data
and technologies.

Furthermore, the interconnection extends to WP6, where the platform is tested using
operational data gathered from the demonstration sites. This testing phase is critical for
validating the effectiveness and functionality of the designed platform in real-world
scenarios.

The collaborative efforts across WP4, WP5 and WP6 create a cohesive workflow, ensuring
that the platform not only meets design specifications, defined in Task 2.4, but also proves
its practical utility, defined in Task 2.5, through rigorous testing with operational data from
the demonstration sited.

11 Dynamic Energy & Process Management Platform

Funded by the European Union

2. Architecture Design

In this chapter, an overview of the ISO/IEC/IEEE 42010:2011 standard is provided as a
fundamental methodology for developing architectural descriptions (ADs) in software-
intensive systems. The chapter emphasizes the application of this standard to the 4+1
Architectural View Model, incorporating perspectives such as Logical, Physical, Process,
Development, and Scenarios views. This approach aims to address a variety of
stakeholder concerns and foster a comprehensive understanding of software architecture.

2.1. ISO/IEC/IEEE 42010:2011 Standard

The current standard for architecture design, ISO/IEC/IEEE 42010:2011 [1], is an
evolution of previous standards, notably IEEE 1471 [2], published in 2000 as the first
prevailing approach to software architecture design follows the guidelines outlined in
ISO/IEC/IEEE 42010:2011, entitled "Systems and software engineering - Architecture
description".

This standard provides a structured methodology for creating architectural descriptions
(ADs) for software-intensive systems, including a step-by-step workflow.
The process includes identifying and documenting stakeholders, identifying their
architecture-related concerns, selecting and detailing architecture viewpoints to address
these concerns, generating architecture views with corresponding models, ensuring view
consistency, and documenting the rationale for architectural decisions.

The ISO/IEC/IEEE 42010:2011 1 standard relies heavily on viewpoints and views to
capture different facets of a software system, allowing focused examination of specific
concerns and issues while maintaining overall architectural consistency. This approach
has proven successful in several cases, delivering higher quality artifacts and deliverables
than less structured methods that attempt to address all issues in a single pass.
Viewpoints are essentially collections of patterns, templates, and conventions tailored to
construct specific types of views, such as the functional viewpoint, which contains all the
necessary functions for architecture description. IEEE 1471 aimed to establish best
practices for the software and systems communities, addressing the fragmented
landscape of architectural practices and description languages prevalent at the time. The
adoption of this standard led to the recognition of the benefits of a common conceptual
foundation and terminology within the software architecture community.
Over the years, the standard has evolved based on a decade of use of the first edition in
industry, academia, and government. The 2011 version includes additional features such
as modeling architecture decisions, managing correspondence between views, and

1 The ISO/IEC/IEEE 42010:2011 has been updated and improved in the ISO/IEC/IEEE 42010:2022.

12 Dynamic Energy & Process Management Platform

Funded by the European Union

supporting Architecture Description Languages (ADLs) and architecture frameworks. It
remains the benchmark standard for software architecture design.

In its current iteration, the standard defines a comprehensive methodology for the
architectural description of software-intensive systems that includes a workflow with steps
such as identifying stakeholders, identifying architecture-related concerns, selecting
architecture viewpoints, creating architecture views with models, and analyzing their
consistency. The standard continues to use viewpoints and views to document different
aspects of a software system, highlighting specific concerns and issues while ensuring a
coherent architectural design.
Rozanski and Woods revised the ISO/IEC/IEEE 42010:2011 in [2], where these key
definitions are introduced. In Figure 2 the relationships between these concepts are
graphically represented.

2.1.1. System of Interest

The system whose architecture is being studied or considered.

2.1.2. Stakeholder

An individual, group, organization, or similar entity with a vested interest in the realization
of the system.

2.1.3. Architecture

The basic ideas or characteristics of a system within its environment, expressed through
its components, connections, and the principles that guide its design and growth.
Essentially, it's how a system is structured, its properties, how it interacts with its
environment, and so on.

2.1.4. Architectural Description

A document or output used to convey the structure of an architecture, which may include
diagrams such as component diagrams or data flow diagrams.

2.1.5. Concern

An interest in a system that is important to one or more stakeholders. This can be a
requirement, either functional or non-functional, or an objective that a stakeholder has with
respect to the system.

2.1.6. View

A collection of models and explanations that represent a system or part of it, focusing on a
particular set of concerns.

2.1.7. Viewpoint

A set of patterns, templates, and conventions that guide the creation of a particular type of
view.

13 Dynamic Energy & Process Management Platform

Funded by the European Union

2.1.8. Model

A simplified representation of a facet of the architecture, often in the form of a UML
diagram2.

Figure 2: Architecture concepts and their relationships.

2.2. 4+1 Architectural View Model

The 4+1 model aims to address the concerns of different stakeholders and provides a
holistic understanding of the software architecture.
The "+" in the 4+1 model represents the 'Scenario' view, which complements the four
architectural views by providing specific use cases or scenarios that demonstrate the
system's behavior in various situations.
The 4+1 Architectural View Model, developed by Philippe Kruchten [3], extends the
traditional software architecture viewpoints and includes the following perspectives:

2.2.1. Logical View (Functional Viewpoint)

This view focuses on the functional requirements of the system and describes the system
in terms of key abstractions or objects. It outlines the interactions, responsibilities, and

2 In the context of this deliverable, it was preferred not to use UML diagrams in order to achieve a simpler
knowledge explaination. In addition, some technicalities required by this illustration standard were not
defined by the partners.

14 Dynamic Energy & Process Management Platform

Funded by the European Union

relationships between these objects. The main purpose was to capture the high-level
design of the system’s functionality.

2.2.2. Physical View (Deployment Viewpoint)

The physical view describes the deployment and distribution of the system components
across the hardware. It includes details about the network connections, and how software
components are mapped to the physical environment. The goal is to specify the system's
deployment architecture, addressing hardware and network considerations.

2.2.3. Process View

This view addresses the runtime aspects of the system. It illustrates how the system will
be structured to handle concurrent execution, including processes, threads, and their
interactions. The objective is to show how the system components will execute
concurrently and how they will coordinate and communicate.

2.2.4. Development View

This view focuses on the software development aspects and provides guidance on how to
organize the software development process. It includes information about coding
standards, development tools, and version control. It is designed to help developers
implement the system and ensure consistency and efficiency.

2.2.5. Scenarios (Use Cases) View

The scenarios or use case's view illustrates how the system behaves in response to
different scenarios or use cases. It highlights the interaction between the system and
external entities under various conditions. Its purpose is to provide a realistic, user-centric
perspective on the system's operation.

15 Dynamic Energy & Process Management Platform

Funded by the European Union

3. Methodology

In this section, we delve into the methodology employed by FLEXIndustries for architecting
its software, aligning with the ISO/IEC/IEEE 42010:2011 standard. This discussion can
help to understand the fundamental concepts guiding FLEXIndustries' design choices,
aiding both the seasoned practitioner and the occasional reader in comprehending the
rationale behind the project consortium's decisions.

3.1. Architecture Design Process

Rozanski and Woods [4] have formulated the architectural design process based on the
following definition: "Architecture Definition is a process by which stakeholder needs and
concerns are captured, an architecture to meet these needs is designed, and the
architecture is clearly and unambiguously described via an architectural description." The
foundation for this process is the ISO/IEC/IEEE 42010:2011 standard. The FLEXIndustries
project adopted the process proposed by [4], aligning it with the mentioned standard (see
Figure 3).

Figure 3: Activities supporting architecture definition.

The Architecture design process follows the pipeline outlined in Figure 3.

Initially, the Scope and the Context of the Architecture were defined, as documented in
D4.5. This document presents an overview of various tools that could be utilized for the
platform’s purpose. The deliverable’s objective was to provide a comprehensive view of
potential tools, including their pros and cons. Based on requirements, scope and context it
is possible to determine which tool best aligns with the application’s customization needs.

16 Dynamic Energy & Process Management Platform

Funded by the European Union

Subsequently, a stakeholder's analysis was conducted in the next subchapter, to identify
and understand the individuals or entities involved in the organizational structure and
production processes of different factories. These actors, representing end-users, have
varied expectations for platform functionality, resulting in different access rights and
restrictions.

The input from both stakeholders and definition of scope and context converges in the
definition of the architecture, encompassing both architectural description and Guidelines
and Constraints for the platform.

The final phase involves the output described in chapter 4, which is the creation of a
system skeleton. This ensures that all information gathered in the previous steps is
accurately collected and implemented in a well-structured platform.

3.2. Analysis of Stakeholders and Requirements

As was previously mentioned, different stakeholders are involved in the organizational
structure, and particularly in the production processes of the factories with different roles
and information needs. From this set of stakeholders, a list of actors of the FLEXIndustries
platform can be extracted in the form of different end-users expecting different functionality
of the solution, and in consequence with different access rights and restrictions to the
services offered by the Platform.

In Table 1 was presented the list of stakeholders involved in the use of the platform.

Table 1: Stakeholders

Platform end-users Role

Planning Director
Responsible for planning and execution of strategic
plans, according to the analysis of the DSS modules.

Managing Director
Responsible for all activities related to the
management process from different point of view, raw
materials, use of energy, production efficiency.

Purchasing Director

Responsible for all activities related to the purchase of
raw materials and machinery. (e.g., In case of
predictive maintenance they should buy the necessary
materials in advance.)

Industrial Manager

Responsible for ensuring efficient management of
materials and workers within a production
environment. Their primary responsibility is to optimize
production processes to enhance energy efficiency.

Maintenance Manager
Maintenance Technician

Responsible for ensuring the optimal functioning of
equipment, machinery, and facilities to prevent
downtime and maintain operational efficiency.

17 Dynamic Energy & Process Management Platform

Funded by the European Union

Management Engineer
Responsible for analysis and searching possible
inefficiencies and proposing optimization changes:
working methods, workforce, equipment.

Quality Manager

Responsible for guaranteeing that the product
complies with legal requirements and expectations of
the customers. Indeed a faulty/outdated machinery
could produce low quality product, with consequent
waste of energy.

Production Manager

Responsible for planning and managing material
resources, supervising the production facilities,
machinery, equipment and daily performance of each
worker.

Energy Manager
Responsible for planning and managing the energy
use in the plant, according to the analysis done by the
HDSS modules of the platform.

According to the role and responsibilities that every stakeholder has in the production
process of the factory, the functionalities expected by every user of the platform is
different, resulting in the specification of a series of desired requirements for the
FLEXIndustries Platform. These requirements can be deduced from the information
provided by the requirement of the Modules and are translated into a set of functional
blocks, modules or components in the Platform able to offer the expected functionality.

Regarding the Functional Requirements, they could be classified according to the
components to which they relate, as outlined below in Table 2.

Table 2: Platform Requirements

Requirement ID
Functional/

Non-Functional
Component

involved
Description

R1-001 Functional General Platform

The platform must
support the
execution of

modules.

R1-002 Functional Module Integration

The platform must
facilitate interaction
and data exchange
between modules.

R1-003 Functional Data Management

The platform must
provide access to all
available historical

process data
required for module

execution

18 Dynamic Energy & Process Management Platform

Funded by the European Union

R1-004 Functional Execution Level

The platform must
be designed with a

scalable architecture
to handle various
activation of the

modules.

R1-005 Functional Data Management

The platform must
be designed with a

scalable architecture
to handle various

data requests,
deterministic and

non.

The R1-001, related to the Platform, means that the platform must be able to support the
execution of modules for energy-related data forecasting (M1), energy price forecasting
(M2), energy consumption and flexibility forecasting (M3), process planning (M4), energy
and flexibility markets (M5), and real-time process optimization (M6). The execution of
these modules occurs within a cooperatively and organized workflow.

The R1-002, related to the modules integration means that for example, results from M1
should be accessible by M3, M4, and M6.

The R1-004, related to the fact that some modules have a deterministic activation, (e.g.,
M1, M2, M3, and M6), while M5 could be executed in both deterministically and on-
demand. As for M4, the execution of the module is solely on-demand. The platform must
be able to handle the activation request for modules, considering that some executions are
deterministic and periodic, while others are not.

The R1-005 is connected to the previous requirement. The platform must be able to
retrieve data collected by T4.1. Data retrieval aligns with the execution of the module,
meaning that if a module is executed deterministically (e.g., every hour), the data retrieval
process is also determined. Instead, for modules that allow the on-demand request, data
retrieval is on-demand. Therefore, the platform must be capable of fetching input data
when the module is executed.

Additional details can be added, or these requirements can be tailored, based on the
specific project needs and implementation context.

19 Dynamic Energy & Process Management Platform

Funded by the European Union

3.3. Required Components

Figure 4: Macro-level modules composing the FLEXIndustries Platform.

In Figure 4 is possible to see all the components that are required for the FLEXIndustries
Platform. The components were chosen based on the requirements listed before and fully
discussed.

3.3.1. Data Gathering and Management

Data Gathering and Management was composed of a data broker, as central element, that
manages the data streams among the platform’s component and with the other entities
within the FLEXIndustries architecture. It facilitates the interconnection of modules by
leveraging the publish/subscribe paradigm.

The data handler, another integral part of this component, processes requests from the
data broker, utilizing information from data sources sent in the payload. The data source
information includes the APIs through which the pilot exposes its data. Subsequently, the
data handler retrieves and stores data in a specific data-storage accessible by the agents.

Consequently, this component includes also the Metadata Storage which stores the data
collected from the field and the external sources, offering to the agents the ability to
retrieve large data without imposing overhead on the data broker.

3.3.2. Data Orchestration

The data orchestration component aims to configure, deploy, monitor and orchestrate the
platform components. It is replicated by the Multi-Agent System defined in T4.3 for the
Planning and Operation Layer. Its primary role is to efficiently distribute and execute
agents based on the data they need to retrieve from the database. It can be viewed as

20 Dynamic Energy & Process Management Platform

Funded by the European Union

orchestrating data rather than services, since it determines which agent can run based on
the availability of the required data.

Indeed, the Data orchestration communicates with the Data Processing component to
coordinate their execution, and interfaces with Data Gathering and Management to
request the necessary data from the agents.

3.3.3. Data Processing

The "Data Processing" component in FLEXIndustries is comprised of three main elements.

Firstly, it involves the development of a specific task aimed at supporting a holistic
modeling and simulation approach. This task (T4.2) enabling online modeling and
simulation with a focus on model energy demand according to production objectives,
integrating various layers of modeling, and extending simulation engines to support value-
stream, process, and discrete-event simulation.

Secondly, it includes contributions from components developed within Work Package 5
(WP5). Tasks 5.1 to 5.4 within WP5 include the analysis and forecast of process, material,
and energy-related data, the development of a Process and Energy Planning tool, energy
efficiency, and flexibility monetization for energy markets, and the creation of a Process.

In the "Data Processing" component, is present also the Frontend of the platform
developed by T4.4. This involves establishing the structure and framework to host the
Application Layer and the Decision Support System.

3.3.4. Platform Integration

Platform integration is a component that aims to supervise the ongoing system integration
of the WP4 infrastructure with the modules developed in WP5 and refined in WP6. It also
aims to address security requirements by implementing authorization and authentication
tools customized for the application. The entire process will undergo testing facilitated by a
central code repository and a Continuous Integration/Continuous Deployment (CI/CD)
infrastructure.

21 Dynamic Energy & Process Management Platform

Funded by the European Union

4. Architecture Views

4.1. Scenario

The scenario serves as the foundation for the logical, process, physical, and development
views. It is the reference point for the entire project, as it outlines the platform's intended
features and the technical steps necessary to implement them.

For FLEXIndustries, the abstract use case is predetermined by the Grant Agreement in the
form of work packages and tasks. From a high-level perspective, this project is aimed at
helping industries optimize their energy consumption by interacting flexibly with the power
grid. To achieve this optimization, data is crucial. The FLEXIndustries Platform is designed
to work with a set of data sources that characterize the scenario itself.
In summary, regardless of the specific details that distinguish one pilot from another, there
is a need from an architectural perspective to manage information flows between modules
efficiently.

4.2. Logical View

The primary objective of the logical view is to illustrate the functionalities that the platform
provides to its users. These functionalities are closely related to the modules that make up
the architecture, as shown in Figure 5, which presents the main services of the
FLEXIndustries platform. It's noteworthy that certain modules are not directly derived from
WP4 and WP5. This deliverable aims to ensure effective communication between all the
building blocks produced in these phases, relying on additional services for completion.

22 Dynamic Energy & Process Management Platform

Funded by the European Union

Figure 5: Logical View

In the following sections, the roles of each macro-thematic building block will be discussed,
and it will be shown why certain services are essential for fulfilling user-requested plans
and maintaining a seamless architecture.

4.2.1. WP4 and WP5 Agents

The operational components coming from WP4 and WP5 are treated as agents of this
platform. These agents practically perform computations requested by the user and whose
results are needed by the user himself. Each of these agents is responsible for a small
part of the overall canvas. The responsibility of the Multi-Agent System is then to
coordinate the flow of information between these modules in order to respond to the user
with an aggregate view of their contribution. The Dynamic Energy and Process
Management Platform ultimately attempts to seamlessly ensure that these core
components are able to converge on a specific outcome in a cooperative manner.

The success of this mechanism is due to the abstracted communication layer seen by
each service. In other words, each WP4 and WP5 Agent receives as input only the task it
has to perform. It does not have the visibility of the whole platform, since it does not need it
to proceed with the execution of its tasks.
The activities that can be carried out by an agent towards the system as a whole are two:
to communicate the completion of a task or to request some data from the field.

23 Dynamic Energy & Process Management Platform

Funded by the European Union

This second activity causes the individual agents to also communicate with the Metadata
Storage and, logically, with the Resource and Data Management Layer. This means that if
new data is required to complete a task, it is possible for the agent to pause its execution
and request its need from the Multi-Agent System. Once the data is available, the
orchestrator notifies the agent that it can access the repository to retrieve what it needs3.
Therefore, the arrow in Figure 5 between the WP4 and WP5 Agents and the Metadata
Repository implies a physical communication, while the connection between the agents
and the Task 4.1 components is ephemeral. The former is actually used by the agent to
access the data, while the latter is logical and only indicates that the information retrieved
by the Metadata Storage comes from the Resources and Data Management Layer.
Technically, the agents access the data from the Metadata Storage, while this one actually
receives the data from RDML in the background.

This decoupling between the Communication Backbone and the WP4 and WP5 Agents
ensures that these ones are not responsible for the communication or the orchestration
mechanism that is responsible for the macro blocks described in sections 4.2.2 and 4.2.3.
Thus, their operation is independent of how these other services are implemented, which
allows the platform to be flexible to changes or improvements.

4.2.2. Communication Backbone

The Communication Backbone is the central event manager of the Dynamic Energy and
Process Management Platform. The core services of the architecture communicate
through this component, as the input coming from the user is also shared within the
communication backbone.
The name event manager derives from this crucial point: all messages exchanged
between the core services are events and therefore follow a fully asynchronous paradigm.
The same is true for user input, which is asynchronous and can only be ingested and
managed by the architecture when the source provides it.

Thus, the communication backbone is not just a marshalling yard that acts as a network
switch, capable only of redirecting the messages coming from a source to a specific
destination labeled with its internal IP address. In fact, the communication backbone is
also able to manage and keep separate the different data flows, while ensuring a high
throughput between the components.

In conclusion, whenever a new input request comes from the user, the Multi-Agent System
is the first component to be triggered by this event. As a consequence, it elaborates the
sequence of steps necessary to carry out the planning by publishing a set of events
addressed to the specific agents called in cause by the particular workflow. Since they are
in turn triggered by the Multi-Agent System, their activity is strictly limited in time, since it
ends when the assigned task is completed.

3 By isolating the data flow from the control flow, the platform achieves higher throughput. These features are
described in more detail in the following subchapters.

24 Dynamic Energy & Process Management Platform

Funded by the European Union

4.2.3. Multi-Agent System

4.2.3.1. Component

The Multi-Agent System is the data orchestrator of the platform. It is responsible for
triggering the agents involved in the workflow requested by the user whenever they are
needed.
Since these involvements are asynchronous, the orchestrator is able to continuously
manage possible further inputs coming from the user while executing the workflows
requested in the past.
The interoperability achieved by this component depends not only on the asynchronous
paradigm, but also on Metadata Storage. This is used by the orchestrator to store
information about its current pending activities in such a way that it can easily pause and
resume a task without losing control over it.
Logically, the Multi-Agent System is connected to the WP4 and WP5 Agents and the Data
Handler. These are the only two recipients of events published by the orchestrator over the
communication backbone. For obvious reasons, the first connection is used to distribute
the computational load among the agents to complete a user request. The second, on the
other hand, is needed whenever an agent realizes that it cannot complete a task because
some data preparatory to the execution of the task is missing.

4.2.3.2. User APIs

Figure 6: APIs exposed by the platform to the user.

The list of APIs exposed by the Dynamic Energy and Process Management Platform are
listed in Figure 6. The user can run the FLEXIndustries workflows by contacting the /run

POST API. This request requires some information from the user, such as the type of
workflow they want to run and some optional data for the agents. At this point, the server
assigns a unique identifier to the request so that the user can retrieve the result when it is
complete.

The /list endpoint can be used to retrieve the list of workflows run by the user. This set

includes not only the completed ones, but also the schedules currently in execution. To
retrieve the result associated with a particular task, the user should use the
/result/{task_id} endpoint, which returns in output the overall result obtained by

aggregating the contributions of the individual agents.

25 Dynamic Energy & Process Management Platform

Funded by the European Union

4.2.4. Data Handler

All data requests coming from the WP4 and WP5 agents are managed by the Data
Handler. The role of this component is to provide an asynchronous interface from the
Resources and Data Management Layer to the other core components.

This interface is responsible for managing the data requests coming from the Multi-Agent
System4 to the Resources and Data Management Layer.
From a general perspective, the Data Handler is able to interact with all of the interfaces
that the Task 4.1 component exposes through its Historical Data Service and Real-Time
Data Service5. In any case, the responses provided by these two interfaces are formatted
according to the data model adopted by the RDML itself, which differs from the format with
which these data tasks are shared by the communication backbone.
In order to place core components capable of understanding the events exchanged
between them, it is necessary to ensure that the data schema is the same.
The data handler intervenes in this situation by decoupling the format of the RDML from
the format of the data tasks exchanged between this module and the orchestrator. In this
way, it is possible to modify the two standards separately over time, guaranteeing the
platform that it can adapt to new formats by correcting only the data models encapsulated
in the Data Handler.
Indeed, it would not be advantageous for the RDML to have a format that completely
mirrors the one adopted by the Multi-Agent System. These two schemas serve two
completely different purposes and merging them would only result in a huge amount of
time being wasted.

In addition, the Data Handler also acts as a data endpoint for the WP4 and WP5 Agents.
This means that if they need some special input data that cannot be handled within the
Task 4.1 component6, it is possible to make available this further data source by designing
and developing the corresponding Data Handler.

Once the RDML responds to the request made by the Data Handler, the corresponding
data is published by the Data Handler to the Metadata Storage so that the agent that
logically generated the data task can read the result.

4.2.5. Resources and Data Management Layer

This component is the aggregated data source that the WP4 and WP5 Agents can use to
retrieve the data they need.

4 As introduced in subchapter 4.2.1, in a data request pipeline the Multi-Agent System is just an intermediary
between the agent which originated the request and the Resources and Data Management Layer.
5 For more information about these two modules, please refer to D4.3.
6 For example, if a particular highly customized protocol cannot be integrated into the Resource and Data
Management component for some reason.

26 Dynamic Energy & Process Management Platform

Funded by the European Union

4.2.5.1. Component

As already anticipated in the previous subchapter, this module responds only to the data
requests that come from the Data Handler. Depending on the type of request, the Data
Handler can use the services exposed by this component.
In order to store the data in the internal data store and then offer it to the Data Handler,
this module must be connected to the real world by a dedicated link.

4.2.5.2. Pilots Link

In fact, this document has not specified whether the entire Dynamic Energy and Process
Management Platform will be deployed at the edge or in the cloud. Therefore, it is difficult
to highlight the characteristics of the connection between the platform and the pilot plants.
What can be said today is that in the case of a cloud deployment, the data transfer must
be kept encrypted to ensure the security of the payload.
In addition, the platform should be able to handle heterogeneous situations. For example,
it may be possible to run part of the platform, including data storage, in the cloud, while the
rest of the architecture runs on the edge.
Since this information is missing or only partially available at the time of writing, the second
version of this deliverable will provide more appropriate specifications in this regard, with
particular attention to the specific implementation requirements of each pilot.

However, the Resources and Data Management Layer can be deployed in the cloud or at
the edge, depending on the specific need. If it will run on the edge, it will be equipped with
export services (e.g. MQTT export) so that the collected data can be transferred from the
edge to any machine in the cloud.
When running in the cloud, the sensors need to send data to the machine in the cloud. For
example, the sensors could send data directly to an MQTT broker in the cloud. Another
alternative in the example of running in the cloud is that instead of sending data directly to
the cloud, the sensors in the factory can send it to an RDML installed in the factory, and
from there the data can be sent to the cloud using export services. In this case, the RDML
in the factory is only responsible for sending the data and no other services are used.

4.2.6. Frontend SDK

Although it is technically wrong to include an SDK in a platform architecture, in this case
the name of this component depends only on the official title of Task 4.4. This task aims to
design the structure and frameworks needed to build the front end of the DSS modules
developed in WP5. For illustrative purposes only, this software development kit is treated
as a separate component in Figure 5, even though it should be replicated across all
agents that will expose a GUI composed starting from this framework. In addition, this
module is not linked to any other service in the FLEXIndustries platform. This choice
depends on the fact that it is necessary to understand the options and configurations that
these frontends offer to the user. Once the whole picture is complete, it is possible to
connect this component to the modules it needs.

4.2.7. Security Platform Integration and Management Tools

This module is composed of several tools that are useful to monitor what is happening
inside the platform and to ensure the security between the internal and external actors.

27 Dynamic Energy & Process Management Platform

Funded by the European Union

Monitoring is essential in any data ingestion platform, as it allows to check the status of
each service in order to apply the appropriate resolution actions.
In this particular case, it is possible to use different monitoring techniques that can be
applied to control the architecture from different perspectives.
Regarding the different services, the health check mechanism is probably the best option
to guarantee that all modules are running as expected. Instead, regarding the amount of
load assigned to the core modules, it is possible to continuously analyze some metrics
about the communication backbone to know if the running instances are able to handle all
the incoming requests or not.
These two methods can be used to both ensure that the actual platform setup is healthy
and able to handle the requests coming from the user7.

The security goal can be achieved by implementing secure communication within and with
the platform. Secure communication does not just mean using SSL on top of TCP to
ensure that the APIs used by the user are not subject to man-in-the-middle attacks8. In
fact, a centralized identity and access management service might be the best choice for
implementing authentication and authorization of users and services.
Another possible option is to use a key management module to secure communication
between the microservices that make up the architecture.

Finally, this component allows the dynamic deployment of the different modules in a
DevOps and unified manner.

7 The set-up is the actual state of the architecture. Simply speaking, the state is composed of the list of
services that should be in execution and the number of instances of each service.
8 However, HTTPs instead of HTTPS is a crucial and strict requirement to guarantee security from the user's
point of view and interest.

28 Dynamic Energy & Process Management Platform

Funded by the European Union

4.3. Deployment View

Figure 7: Deployment View.

The Logic View of Figure 5 can be realized by implementing and using a set of tools that
are widely used in distributed architecture designs, like it depicted in Figure 7.
This deployment view is still general, since it is simply a practical version of what was
described abstractly in subchapter 4.2.
From a standard point of view, a Deployment View should be integrated with the more
technical features specific to this type of architectural designs, such as load balancing,
secret management, SSL implementation, high availability replication mechanism, disaster
recovery, dynamic instantiation, and more.
However, since this document describes the first version of the platform, and since not all
the tools used to achieve these goals have been definitively identified, they will not be
considered in this section.

Finally, it is worth noting that Keycloak and GitLab, and their alternatives, mentioned in
subchapter 4.3.7 are more the subject of Task 4.5 and its deliverable. Consequently, these
solutions will only be mentioned here since they could be easily integrated into the
platform. On the other hand, the corresponding deliverable will define the final choices and
the rationale behind them.

4.3.1. Docker Containers

Docker's importance in deploying applications across multiple platforms, including edge
and cloud, is due to its integration of container tools and technologies. Docker is built on

29 Dynamic Energy & Process Management Platform

Funded by the European Union

an open foundation, leveraging components such as runc, an implementation of the Open
Container Initiative (OCI) specifications, and containers, a high-level container runtime.
This integration provides a robust framework for encapsulating applications and ensuring
consistent deployment. In addition, Docker provides developer-friendly features such as a
CLI for container lifecycle management and access to a public container registry. This
seamless orchestration is complemented by high-level tools such as Docker Compose and
Kubernetes, which improve application management, scalability, and resiliency in dynamic
environments.

Therefore, the deployment that will be used relies on the Docker image building process.
Then the Multi-Agent System will logically interact with all these services, but actually it is
not clear whether a service registry is needed or not. Of course, with this kind of
component, it is easier for the platform players to discover their neighbors and exchange
data with them. On the other hand, it is also true that some features of Kubernetes9 and
Apache Kafka10 features should partially solve this issue. Therefore, the choice depends
on the effort required to deploy and manage this additional service, which should simplify
interaction within the platform.

4.3.2. Kubernetes

Kubernetes11 is a popular tool for managing container-based workloads in a horizontally
scalable and distributed manner. It uses a declarative configuration approach that
automates deployment, scaling, and operational tasks while abstracting from the hardware
resources of the underlying instances. In a symbiotic relationship with Docker, Kubernetes
seamlessly integrates Docker containers as its primary packaging format, combining the
benefits of Docker containerization with the robust orchestration capabilities of
Kubernetes. This dynamic duo, complemented by tools like kubectl and Helm, creates a
comprehensive ecosystem for efficiently deploying, scaling, and managing containerized
applications across diverse environments.

Kubernetes uses various service components, including Kubernetes Service, kube-proxy,
and Ingress controller, to distribute loads efficiently across services in a cluster.
Kubernetes Service offers a dependable endpoint for load balancing, kube-proxy
maintains network rules for routing traffic to pods, and the Ingress controller manages
external access and routing strategies. These components can improve resource
utilization, scalability, and performance of containerized applications in a Kubernetes
cluster. They can also be used with Kafka Consumer Groups to distribute the load among
multiple modules. It is important to note that the only difference between components is
whether they need to be connected to the communication backbone. Consumer groups
may benefit the WP4 and WP5 Agents, as well as the Multi-Agent System and the Data
Handler12. Instead, the others would communicate using other protocols like HTTP or

9 More about Kubernetes Service in subchapter 4.3.2.
10 More about the Consumer Groups in subchapter 4.3.3.
11 https://kubernetes.io
12 The replication of the agents, Multi-Agent System and Data Handler requires these components to be
stateless. For instance, the Agent n can be replicated, and the load distributed across its replicas solely and
only if the actions performed by the module does not depend on the history of it.

30 Dynamic Energy & Process Management Platform

Funded by the European Union

gRPC. It is still under evaluation the exploitation of proxy and service meshing tools like
Istio13, Envoy14, or Traefik15.

4.3.3. Apache Kafka

Apache Kafka16 is an open-source, distributed event streaming platform that is renowned
for its ability to handle real-time streaming data. It has a central broker that oversees the
organization of data streams into individual records encapsulated in topics. This design
ensures data persistence across multiple server instances, which increases reliability.
Kafka's main components consist of producers, which generate and publish data, topics
that categorize data streams, consumers that subscribe to and process these streams,
and brokers that facilitate communication between producers and consumers. This
framework is designed for speed, scalability, and efficient distributed operations, making it
a robust solution for real-time data streaming applications.

For these reasons, Kafka seems perfectly capable of managing the messages coming
from the platform components connected to it. As described in Section 4.4, this data is split
into different topics to increase throughput while trying to balance the load between
multiple services. This mechanism can be achieved using Kafka consumer groups.
Multiple Kafka clients can be grouped together to distribute topic messages evenly among
interested consumers.

Other tools besides Kafka can also be used for this purpose, as listed in the Table 3.

Table 3: Alternative tools for Apache Kafka.

Tool Description

RabbitMQ17

RabbitMQ is an open-source message broker that implements the
Advanced Message Queuing Protocol (AMQP). It provides reliable
message queuing, supports various messaging patterns, and is highly
extensible. RabbitMQ is suitable for distributed systems and
facilitates communication between different components.

Mosquitto18

Mosquitto is an open-source MQTT broker that enables efficient
communication especially for the Internet of Things. It supports the
MQTT protocol, providing a publish-subscribe model for messaging.
Mosquitto is simple, resource-efficient, and easy to integrate into IoT
scenarios.

13 https://istio.io
14 https://www.envoyproxy.io
15 https://traefik.io
16 https://kafka.apache.org
17 https://rabbitmq.com
18 https://mosquitto.org

31 Dynamic Energy & Process Management Platform

Funded by the European Union

Zenoh19

Zenoh is an IoT middleware that prioritizes efficient and decentralized
communication. It supports various communication patterns, such as
publish-subscribe and request-reply, and seamlessly integrates
multiple protocols like MQTT, CoAP, and WebSocket. Zenoh's
protocol-agnostic approach provides flexibility and scalability in
dynamic and resource-constrained environments.

4.3.4. Redis

Redis 20 is an open source, in-memory data structure store that serves as a high-
performance and versatile key-value database. It provides fast data retrieval and caching
capabilities. In addition, it can also be used as a publish/subscribe message broker and as
a backend for applications that require fast data access..

Unfortunately, there are not that many tools that can be used to replace Redis. The most
popular is Memcached, which can be used as a caching system by some NoSQL
databases, although this is not a core feature for them. This category includes tools such
as MongoDB and Couchbase.

4.3.5. Ingress and Egress

Inside a Kubernetes environment21, the ingress manages external access to services
within the cluster, providing HTTP and HTTPS routing. It acts as an entry point, handling
traffic routing, load balancing, and SSL termination. Conversely, the egress governs
outgoing traffic, controlling pod access to external services or the internet. Ingress and
Egress together regulate how external requests enter the cluster and how internal
requests leave, contributing to secure and controlled communication for Kubernetes
applications.

In the deployment view of the Dynamic Energy and Process Management Platform
depicted in Figure 7, it seems these two communication gates are basically associated to
the data flow that is connected to the pilots’ premises. Of course, this is only a
simplification. The API Gateway managed by Apache APISIX is also an endpoint for a
potential FLEXIndustries user and, therefore, it is possible to also consider it as an ingress
and egress point for the architecture.
The association of this block to the pilots is only a graphical notation that is exploited for
focusing the attention of the part of the architecture where a lot of data will flow. In
addition, this entry point will in case be accompanied by also a VPN Gateway in order to
ensure the security of the link between the on-premises data source and the cloud
platform22.

19 https://zenoh.io
20 https://redis.io
21 In reality, the ingress and egress concept are adopted generally adopted also to indicate the incoming and
outcoming data of a cloud environment.
22 At the time of this writing, it is not clear which use cases will provide data access directly from the field with
a link to their on-premises data storage, or how many already have cloud subscriptions that are also used for
data storage purposes.

32 Dynamic Energy & Process Management Platform

Funded by the European Union

4.3.6. Apache Apisix

Apache Apisix is an open-source API gateway that provides high-performance and
scalable API management. Some key features of Apisix are scalability, dynamic load
balancing and dynamic configuration through REST APIs.

Other tools that are comparable to Apache Apisix are described in Table 4.

Table 4: Alternative tools for Apache Apisix.

Tool Description

Traefik23

Traefik is a modern, open-source reverse proxy and load balancer
designed for dynamic environments like Docker and Kubernetes. It
excels in automatic service discovery, offers support for multiple
protocols, and simplifies SSL/TLS certificate management.

Tyk24

Tyk is an open-source API gateway that provides comprehensive API
management capabilities, including rate limiting, authentication,
analytics, and a developer portal. It is suitable for securing,
monitoring, and controlling access to APIs and supports both on-
premises and cloud deployments.

Kong25

Kong is a scalable API gateway built on NGINX with features such as
load balancing, authentication, traffic control, and over 80 extensible
plugins. Suitable for various environments, Kong manages the entire
API lifecycle and supports RESTful and GraphQL APIs in
microservices architectures.

4.3.7. Keycloak

Keycloak is an open-source identity and access management solution. Developed by Red
Hat, it provides single sign-on (SSO), user authentication, authorization, and social login
capabilities. Designed to secure applications and services, Keycloak supports multiple
protocols, including OAuth 2.0 and OpenID Connect.
This makes Keycloak suitable for centralized identity and access management (IAM), but
not the best choice for securing communication between microservices. Instead, SPIFFE
(Secure Production Identity Framework for Everyone) and SPIRE (SPIFFE Runtime
Environment) is a specialized framework focused on providing secure identities for
microservices in dynamic and distributed environments.

As a result, platform security could be assigned to multiple services and tools. Keycloak
could manage the authentication and authorization of FLEXIndustries users, while

23 https://traefik.io/traefik
24 https://tyk.io
25 https://konghq.com

33 Dynamic Energy & Process Management Platform

Funded by the European Union

SPIFFE/SPIRE could secure the communication between the modules that make up the
Dynamic Energy and Process Management Platform.

4.3.8. GitLab

GitLab is a web-based platform for managing Git repositories, providing a comprehensive
set of features for source code management, continuous integration, continuous delivery,
security, and collaboration.
As a Git repository, it provides code versioning, control, and collaboration among
developers. As a CI/CD tool, it allows automated building, testing, deploying, delivering,
and therefore releasing. This is done by instantiating GitLab runners, which are agents
that physically execute the CI/CD jobs. Finally, it can also be used as a container and
package repository to serve as an artifact repository for Docker images and libraries.

These complete set of features, in addition to the possibility of self-hosting the entire tool,
make GitLab one of the most valid choices for repositories and CI/CD pipelines. However,
in Table 5 some possible tools are provided.

Table 5: Alternative tools for GitLab.

Tool Description

GitHub26

GitHub is a leading code hosting platform with powerful collaboration
features and built-in CI/CD through GitHub Actions, making it the best
choice for version control and automated workflows. The downside of
GitHub is that cannot be self-hosted.

Bitbucket27

Bitbucket by Atlassian supports Git and Mercurial repositories. It
offers robust code collaboration features and integrated CI/CD with
Bitbucket Pipelines, providing a complete solution for development
teams. Bitbucket Server is a self-hosted version of Bitbucket.

Jenkins28

Jenkins is a popular open-source automation server. While not a
repository, it integrates seamlessly with Git and other VCSs to
provide rich CI/CD capabilities for automating software development
processes. Jenkins can be easily self-hosted inside an existing
infrastructure.

Travis CI29

Travis CI is a CI/CD platform built for GitHub repositories. Configured
through a simple YAML file, it automates builds and tests, and
supports a range of programming languages for seamless integration.
Travis CI is only available for a fee.

26 https://github.com
27 https://bitbucket.org
28 https://www.jenkins.io
29 https://www.travis-ci.com

34 Dynamic Energy & Process Management Platform

Funded by the European Union

4.3.9. Loki

Loki is an open-source, horizontally scalable log aggregation system that is part of the
Cloud Native Computing Foundation (CNCF) landscape. It is designed to handle and store
log data generated by various applications and services in a distributed and efficient
manner.

Loki is also part of the Grafana Labs, and therefore it is completely integrable with the
Grafana Dashboard. However, in Table 6 are reported some possible alternatives to it.

Table 6: Alternative tools for Loki.

Tool Description

Fluentd30

Fluentd is an open-source data collector that efficiently aggregates
logs from multiple sources, parses them, and forwards them to
different destinations using a unified logging approach. Its lightweight
architecture and extensive plugin support enhance flexibility in log
processing workflows. Fluentd is a graduated project of the Cloud
Native Computing Foundation.

Logstash31

Logstash is a tool part of the ELK stack. Hence, it is an Elastic
product for log processing. It allows you to collect, parse, and
transform logs before passing them to Elasticsearch. It supports a
wide variety of input sources and output destinations.

Apache Flume32

Apache Flume is a distributed and reliable service designed for
collecting, aggregating, and transporting large amounts of log data. It
is commonly used in conjunction with Apache Hadoop, making it
suitable for big data environments. It is written in Java, and the latest
version, 1.11.0, was released on October 10th, 2022.

Prometheus

Prometheus is best known for its metrics monitoring capabilities, but it
can also do log collection and query with PromQL. It is particularly
useful in environments where metrics and logs are closely integrated,
providing a unified approach to monitoring and troubleshooting.

4.3.10. Grafana

Grafana is an open-source analytics and monitoring platform that excels in visualizing
time-series data. It integrates with various data sources, including popular databases,
cloud services, and monitoring systems, enabling users to create interactive and
customizable dashboards. Grafana's rich set of features includes support for different chart

30 https://www.fluentd.org
31 https://www.elastic.co/logstash
32 https://flume.apache.org

35 Dynamic Energy & Process Management Platform

Funded by the European Union

types, alerting, and the ability to share dashboards, making it a widely adopted tool for
monitoring and observability.

Inside the FLEXIndustries Platform, Grafana can also be exploited for its complete
integration with Prometheus. In other words, it is very simple create a Grafana dashboard
and select as data source for this GUI the Prometheus Service. However, in Table 7 some
alternatives to Grafana are provided.

Table 7: Alternative tools for Grafana.

Tool Description

Kibana33
Kibana is an open-source data visualization platform primarily used
with the Elasticsearch stack. It provides powerful analytics and
visualization capabilities.

Chronograf34
Chronograf is part of the TICK stack (Telegraf, InfluxDB, Chronograf,
Kapacitor) and is designed to visualize and explore time series data.

Metabase35
Metabase is an open-source business intelligence tool that allows
users to create charts and dashboards and provides an easy-to-use
interface for exploring data.

Apache
Superset36

Apache Superset is an open-source business intelligence web
application that supports data exploration, visualization, and
interactive dashboards.

4.3.11. Prometheus

Prometheus37 is an open-source monitoring toolkit which ensures reliability and scalability
in dynamic environments. It was originally developed by SoundCloud but is actually widely
used in the cloud-native ecosystem. The tool collects time-series data, making it easy to
query and visualize performance metrics across applications and infrastructure. Using a
multi-dimensional model, it supports dynamic service discovery, robust querying, and
rules-based alerting. Integration with container orchestration, especially Kubernetes, is
seamless, often coupled with Grafana for visualization. With its adaptability, Prometheus is
ideal for monitoring diverse systems and applications.

Within the FLEXIndustries platform, Prometheus is used in conjunction with Grafana to
create a monitoring dashboard that aims to continuously analyze the status of the core
components. In other words, the idea is to know at any moment the actual overload of the

33 https://www.elastic.co/kibana
34 https://www.influxdata.com/time-series-platform/chronograf
35 https://www.metabase.com
36 https://superset.apache.org
37 https://prometheus.io

36 Dynamic Energy & Process Management Platform

Funded by the European Union

platform by monitoring the percentage of completed tasks in relation to the scheduled and
paused ones.

Table 8: Alternatives to Prometheus.

Tool Description

Zabbix38

Zabbix is a flexible and scalable open-source monitoring solution that
supports metrics, performance, and availability monitoring. Using a
server-agent architecture, it provides auto-discovery, alerting,
reporting, and a web-based interface for configuration and analysis in
enterprise-class environments.

Datadog39

Datadog is a cloud-based monitoring platform built for modern cloud
and microservices environments. It provides comprehensive
infrastructure, application and log monitoring solutions with real-time
dashboards, anomaly detection, APM and collaboration tools. It is
widely used for holistic observability across complex, distributed
systems but, a Monitoring-as-a-Service, it does not provide self-
hosted versions.

Graphite40

Graphite is an open-source tool for real-time graphing and monitoring
of time series data. It provides scalable tracking using the Carbon
daemon, the Whisper database, and a web application. It is often
integrated with other tools and is often used in larger monitoring
solutions.

4.4. Process View

The main objective of this subchapter is to show the basic message exchange that
happened between the core components and the user.
Hence, the process which is triggered when a FLEXIndustries user starts a new
optimization pipeline is described in subchapter 4.4.1. Then, the interaction between the
three core components is illustrated in subchapters 4.4.2 and 4.4.3.

38 https://www.zabbix.com
39 https://www.datadoghq.com
40 https://grafana.com/oss/graphite

37 Dynamic Energy & Process Management Platform

Funded by the European Union

4.4.1. User – Multi-Agent System Communication

Figure 8: Communication between the User and the Multi-Agent System through the API Backend.

The interaction depicted in Figure 8 is the standard procedure that can be used by a
generic user to interact with the Dynamic Energy and Process Management Platform,
through the API Backend.

To start a new FLEXIndustries schedule, the user can send a POST request to the API
backend. As already described in chapter 4.2.3.2, the user can also specify the workflow
to be executed. At this point, the backend creates the task for the Multi-Agent System and
inserts into the message an identifier generated using the UUID4 standard specified in
RFC4122. This id is also returned to the user so that it can check the status of the request.

The delivery of the Orchestrator Task from the API backend is completely asynchronous.
This means that the task is sent to the communication backbone in such a way that the
Multi-Agent System can process it whenever possible. As a result, the API server is not
aware of the execution. In other words, from the backend’s point of view, the task may or
may not be handled by the Multi-Agent System. The downside is the completely
decoupled way in which these core components interact with each other, which leads the
platform architect to manage them separately, simplifying monitoring in the long run. Of
course, this requires the user to keep track of the status of the task he or she has just
created.

 ser I ackend ulti gent ystem etadata torage

 T

create the task

 xecuting the orkflow

store the result

storing

get the result of task id

result

 result

38 Dynamic Energy & Process Management Platform

Funded by the European Union

Figure 9: Communication between the Multi-Agent System and the Agent without and with
optional data.

For this reason, the GET API shown in Figure 8 can be used to obtain the progress of the
FLEXIndustries schedule.
For the API backend, the verification method is very simple. Since the Multi-Agent System
publishes the result of the task in the Metadata Storage as soon as it is completed, if the
result with an id equal to the previously quoted task id exists, it means that all is well.
Otherwise, the task is still in progress, or some problem occurred during the workflow.

4.4.2. Multi-Agent System – Agent Communication

Once the Multi-Agent System receives an Orchestrator Task, it executes all the steps
specified by the workflow selected by the user. This results in the creation of a sequence
of Agent Tasks for the agents invoked by the specific workflow. If the task requested by
the Multi-Agent System does not require any additional data, and since each agent is
treated as an asynchronous stateless service, the data exchange between these two
actors is simple and telegraphic. As shown in Figure 9, when this scenario occurs, the
agent returns an Agent Task of type COMPLETED and publishes the result to the Metadata

Storage. This makes it accessible from the API Backend, as shown in the previous
subchapter.

 ulti gent ystem gent etadata torage

 gent Data

39 Dynamic Energy & Process Management Platform

Funded by the European Union

Instead, if new data is needed, the agent can simply pause the current task for the missing
information. This operation is encoded by the Agent Task of type PAUSED, which is

returned to the Multi-Agent System by the contacted agent. In addition, the agent can
specify in the message the data source to be contacted to obtain the requested values.
Once this procedure is complete, the Multi-Agent System tries to send a new agent task of
type PLANNED, hoping that the agent will now be able to complete its homework. If all goes

well, the agent publishes the result within the metadata store and returns an agent task of
type COMPLETED.

4.4.3. Multi-Agent System – Data Handler Communication

Figure 10: Communication between the Multi-Agent System and the Data Handler, with the
Resources and Data Management Layer (RDML).

As anticipated in the previous sequence diagram, if the agent feels compelled to request
some data, it suspends its task and communicates the suspension to the Multi-Agent
System.
As soon as the orchestrator receives such a message from the agent, it creates a Data
Task of type REQUEST starting from the data sources specified by the agent, as shown in

Figure 10. Then, for each of these resources, the Data Handler makes a separate request
to the Resource and Data Management Layer (RDML) developed in Task 4.1. Finally, all
partial results are merged by the Data Handler and published to the Metadata Storage. If
the write was successful, the Data Handler returns a Data Task of type RESPONSE to the

Multi-Agent System.

This message is important to the orchestrator because it is, in a sense, the confirmation
that the data has been successfully retrieved from the RDML component and that the
result has been published to the platform cache. The adjective temporary is due to the

 ulti gent ystem Data andler D etadata torage

create data re uest

re uesting the resource

resource

publish the resouces

success error

40 Dynamic Energy & Process Management Platform

Funded by the European Union

expiration time assigned to this data, which is fixed at 60 seconds. Thus, the Multi-Agent
System and the agent that requested the data have 60 seconds to resume the previously
paused planning. Otherwise, all the steps just described and shown in Figure 10 must be
repeated.

4.5. Development View

Figure 11: Development View

The previous section presented the communication flow between the core components
that make up the FLEXIndustries platform.
This communication between these three modules is guaranteed by a set of interfaces,
managers and wrappers that aim at abstracting the underlying data exchange through the
logic that governs the functioning of each core component.
Figure 11 shows the composition of the data handler, the Multi-Agent System, and the
agent components.

The communication backbone at the bottom manages the control event messages, while
the Redis service at the top is responsible for caching results and temporary data, as
explained in the previous chapters. Therefore, each core component is equipped with two
communication interfaces: one for Redis and one for Kafka. Their names are Redis
Gateway and Kafka Gateway, respectively. These two blocks are responsible for
serializing and deserializing the messages coming from and going directly to the
aforementioned data channels. Therefore, these components also implement the
platform's common data model41. As a result, and as shown in Figure 11, the Data Handler

41 In deliverable D2.5 this data model is referred as the Orchestrator Data Model. In reality, it contains the
format of all the kind of messages that are sent and received by the Multi-Agent System.

41 Dynamic Energy & Process Management Platform

Funded by the European Union

is only able to exchange Data Task with Kafka and Data messages with Redis. The Multi-
Agent System, on the other hand, can exchange Data, Orchestrator, and Agent Task with
Kafka and uses Redis to read the output published by each agent and as a persistent
storage for its state. Finally, the Agent can only exchange Agent Task with Kafka, but is
able to read the Data messages written by the Data Handler and write the Task output to
and from Redis.

Each message received from the different gateways is then handled by the managers.
This module organizes the execution of each operation within the core component. In
other words, it practically implements the sequences of operations already illustrated in
Figure 8, Figure 9, and Figure 10.

Finally, each core component is equipped with some core code that is used to distinguish
it from others.
In Figure 11, the Data Handler contains an Async HTTP block, the Multi-Agent System
contains a Core and a Workflow block, while the Agent contains an Agent Service.
The Async HTTP is the implementation of an async HTTP client used to interact with the
APIs exported by the Resource and Data Management Layer components described in
D4.5. If the endpoints of this module change in the future, this core code will change
accordingly42.
The core implements the entire logic of the Multi-Agent System, such as the management
of the workflow, the decoupling management of the messages coming from Kafka, the
pausing and restarting of a paused agent task, and the publishing of data tasks for the
data handler.
The workflow is the Python program used to characterize a FLEXIndustries pipeline.
The agent service is basically the code that uniquely identifies the operations performed
by the agent. It is therefore the code of the WP4 and WP5 modules developed by the
partners involved. As you can see, this code can be developed in isolation by the partners
and only integrated with the agent wrapper at the end. In this way, this procedure is
completely transparent to the partner since the activity is guaranteed by the surrounding
functions.

42 For example, another popular protocol for communicating with other microservices is gRPC, which is also
faster with less overhead because it parses messages using protocol buffers rather than JSON as HTTP.

42 Dynamic Energy & Process Management Platform

Funded by the European Union

4.5.1. Data Model

Figure 12: Data Model adopted for the communication between the core components.

In Figure 12: Data Model adopted for the communication between the core components.
are reported the data models of each kind of message sent over the communication
backbone. As already described in subchapters 4.3.3, 4.4, and 4.5.3, the Agent Task
contains information about the id of the agent called to perform the activity, the optional
input data required to execute the task, and, in the case of a data request, the pointer to
the data source that the data handler must contact. The Orchestrator Task is extremely
closed, since the only information required to start a new pipeline is the name of the
workflow to be executed and the optional input data. Finally, the Data Task contains only
the copy of the data source contained in the Agent Task and some optional configuration
data.

4.5.2. Workflow Example

Figure 13: Example of a possible simple workflow that can be requested to the Multi-Agent
System.

43 Dynamic Energy & Process Management Platform

Funded by the European Union

An example of a classical and demonstrating workflow that can be requested to the Multi-
Agent System is reported in Figure 13. This demo set-up includes the presence of one
Multi-Agent System, of one Data Handler, and of two agents: Agent 1 and Agent 2.
The flow starts from the POST API, which is exploited by a potential user to create a new
Orchestrator Task, as described in 4.2.3.2. Then, the Multi-Agent System create an Agent
Task for the Agent 1, which however is unable to complete its operations due to some
missing data. Hence, the Multi-Agent System create a Data Task for the Data Handler and
another Agent Task for the Agent 2.
Finally, the agents can complete the activities and the overall outcome can be returned to
the user through the GET API.

Figure 14: Coding implementation of the workflow of Figure 13.

The illustration of Figure 13 can be represented by code using Python in Figure 14. What
is extremely important is to notice is the importing of four functions in the first row:
execute, finish, get_result, and execute_and_result.

These can be thought of as library functions provided by the Multi-Agent System to
programmatically describe a FLEXIndustries workflow.
Once the agents and the task are defined using the Agent and TaskRequest data classes,
the execute method sends an Agent Task over the communication backbone. The

optional data requirements are abstracted and handled autonomously by the Multi-Agent
System itself. Therefore, it is not necessary to specify this action in the workflow. After all,

44 Dynamic Energy & Process Management Platform

Funded by the European Union

it is not the task of the author of this simple program to handle such situations. To use a
metaphor, it would be as if the programmer of a high-level language were responsible for
managing low-level resources, timings, and hardware. The get_result method waits for

the results of the tasks to be published within the Metadata Storage. The
execute_and_result method is just a combination of the two former methods, while

the finish method determines the end of the workflow and the publication of the

aggregated results within the Metadata Storage. At this point, it is possible for the user to
retrieve these results using the GET API mentioned above.

4.5.3. Asynchronous Paradigm

These executions are completed asynchronous and, therefore, they do not occupy the
CPU time for all the time. The gateways and the managers are developed using the
asyncio43 python library. Hence, the asynchronous python loop is responsible of handling
the execution of all the asynchronous functions which compose the core components. This
is extremely critical in low-latency and high-throughput architectures.
In particular, the strength of asynchronous event handling lies in the lack of waiting. Any
interruptions in the code due to waiting of various kinds44 are temporarily skipped to free
up time for handling other functions. In this way, it is actually possible to avoid wasting
CPU cycles and thus time without having to spend it waiting for the result of a particular
function. Consequently, by eliminating these waits, it is possible to reduce execution time,
or alternatively, it is possible to perform more operations per second, thus increasing
throughput and decreasing response latency.

4.6. Roles of involved partners

In Table 9, there is a first approach at listing the concrete inputs that we would need from
the partners involved in T2.5.

Table 9. Contributions from involved partners

Partner Related Task(s) Contribution Needed

CERTH T5.4

Provide more details about the near real-time
constraints of the software to be developed in T5.4

Confirm if the proposed architecture is compatible
with the technology to be used for the development of
their ‘online optimal process energy management’
software.

43 https://docs.python.org/3/library/asyncio.html
44 Normally due to CPU-intensive and IO-intensive tasks.

45 Dynamic Energy & Process Management Platform

Funded by the European Union

CAR

T2.4
Verify the architecture design against the
requirements and functionalities specified in D2.5
(outcome of T2.4).

T5.1

Confirm integration features with the platform for the
DSS module developed in T5.1, regarding the
process, material and energy related data analysis
and forecast.

CIRCE T2.3

Ensure that the platform meets the needs of energy
and process management identified during the
analysis of data and technologies in D2.3 (outcome of
T2.3).

UoP T5.3

Confirm if the proposed architecture is compatible

with the technology/approach to be used in

developing the energy load/price forecasting modules

of T5.3.

SIM

T4.2

Confirm if the proposed architecture is compatible
with the technology/approach of their Simulation
Software.

T4.4

Confirm if the proposed architecture is compatible
with their plan for implementing the Digital Twin
Frontend infrastructure and SDK.

STAM
 Give support in the definition of the platform according

to their role in the project.

FORD
 Give support in the definition of the platform according

to their role in the project.

MIL
 Give support in the definition of the platform according

to their role in the project.

THD
 Give support in the definition of the platform according

to their role in the project.

PRO
 Give support in the definition of the platform according

to their role in the project.

TITAN
 Give support in the definition of the platform according

to their role in the project.

INTEC
 Give support in the definition of the platform according

to their role in the project.

46 Dynamic Energy & Process Management Platform

Funded by the European Union

FBK T5.2
Confirm if the proposed architecture captures
correctly the role of the offline process & energy
planning digital tool

TUB T4.1
Confirm if the proposed architecture captures
correctly the role of the Resources and Data
Management Layer.

In Figure 15, a schema illustrates the component of the platform in which the partners are
involved. Consequently, this allows to understand the point of contact between T2.5, led
by LINKS, and the other tasks along with their respective task leaders.
All the blocks with an orange background correspond to the component designed and
defined in T2.5, those in grey correspond to the components that will be developed in
WP4, and finally the white ones to the components that will be developed in WP5.

Figure 15: Partner View.

In summary, the main objectives of the partners involved consist in defining the interface
and the integration mechanism of their component with the platform, ensuring readiness
for the subsequent development of the platform.

47 Dynamic Energy & Process Management Platform

Funded by the European Union

5. Conclusions

The Dynamic Energy and Process Management platform is a complex canvas composed
of multiple efforts from Work Package 4 and Work Package 5.

This composition requires some adjustments to label Task 2.5 as an integrator of multiple
artifacts that attempt to solve multiple goals and return multiple outcomes. The
disadvantage is that the requirements of each player must be taken into account in this
operation.

In fact, some specific implementation needs have been found and identified. It is obvious
that these needs depend on the way all agents have to communicate and cooperate. The
Multi-Agent System and the communication backbone will certainly manage heavy data
flows between the services composing the architecture. In this scenario, the scaling and
the corresponding availability must be as responsive as possible.

Finally, some tools have been identified that can be used to ensure that these
requirements are met. The next steps will include a beta version of the platform, including
the security constraints that make access to the FLEXIndustries portal safe for users and
data providers.

48 Dynamic Energy & Process Management Platform

Funded by the European Union

References

[1] “I I C I 42010:2011.” ccessed: an. 31, 2024. [nline].
Available: https://www.iso.org/standard/50508.html

[2] “I ecommended ractice for rchitectural Description for oftware-
Intensive ystems.” ccessed: an. 31, 2024. [nline]. vailable:
https://standards.ieee.org/ieee/1471/2187/

[3] . . Kruchten, “The 4+1 View odel of architecture,” IEEE Softw, vol.
12, no. 6, pp. 42–50, 1995, doi: 10.1109/52.469759.

[4] ick osanski and oin oods, “ oftware ystems rchitectures,”
2012.

